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a b s t r a c t 

This paper presents an online-learning ensemble framework for nonstationary time series 

prediction. Optimal granular fuzzy rule-based models with different objective functions 

and constraints are evolved from data streams. Evolving optimal granular systems (eOGS) 

consider multiobjective optimization, the specificity of information, model compactness, 

and variability and coverage of the data within the process of modeling data streams. Fore- 

casts of individual base eOGS models are combined using averaging aggregation functions: 

ordered weighted averaging (OWA), weighted arithmetic mean, median, and linear non- 

inclusive centered OWA. Some aggregation functions use specific weights for the relevance 

of the base models and exclude extreme values and outliers. The weights of other aggre- 

gation functions are adapted over time based on a quadratic programming problem and 

the data within a sliding window. This paper investigates whether an online-learning en- 

semble can outperform individual eOGS models, and which aggregation function provides 

the most accurate forecasts. Real multivariate weather time series, particularly time series 

of daily mean temperature, air humidity, and wind speed from different weather stations, 

such as Paris–Orly, Frankfurt–Main, Reykjavik, and Oslo–Blindern, are used for evaluation. 

The results show that ensemble schemes outperform individual models. The proposed lin- 

ear non-inclusive centered OWA function provided the most accurate numerical predic- 

tions. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

1.1. Contextualization 

In recent years, nonstationary data stream processing and real-time model adaptation have become pivotal research top-

ics. Data analysis has changed from offline batch processing of data and the use of deterministic learning and optimization

methods that give multiple passes over datasets to the incremental and dynamic handling of online data streams [7,26,34] . 

Granular computing methods have been proposed to extract meaningful knowledge from large volumes of data. These

methods examine the information flow in dynamic environments and produce and keep updated a granular model (classifier,

regressor, predictor, controller) that can be linguistically understood [6,17,18,24,40] . The concepts of granules and granular

mapping are used in the processes of learning and adaptation from data streams. Granules are objects or elements of a
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domain drawn together by similarity or functionality [48] . A granular map is defined over granules. A set of granules in an

input space are mapped into a set of granules expressed in an output space. Granular maps are found in rule-based systems

[42,49] . 

The concept of granule is related to the concept of specificity [45] . An increase in the specificity of information tends

to increase its usefulness to assist decisions and actions. However, when being very specific we risk being incorrect since

experimental evidence may not be supported by the information. Moreover, we return to the original large dataset problem.

In contrast, being very little specific, we can assure that the true values are included. However, we may end up with an un-

helpful model. In information theory, this is called the specificity-correctness tradeoff [45] . The granularity [27] of granular

models should reflect the available data as much as possible in the sense that granules should cover the data space properly

[21] , while being specific for a more meaningful and purposeful description. 

Granular models built from data streams can be supported by many computational frameworks, such as interval analysis,

statistics, fuzzy sets, rough sets, cluster analysis, neighborhood systems. Generalized constraints [49] are used to delimit and

represent granules within the different frameworks. Computing with granules allows choices of representative objects and

data handling tools. Regardless of the framework, online granulation aims to retain the essence of stream data as granular

objects [29] . While direct application of machine learning methods to data streams is very often not feasible since it is

difficult to maintain all the data in memory, computing with adaptive granules in an online environment aims to gradually

develop more abstract, human-centered representations of time-varying data. 

Evolving systems is a mainstream area of research in online data modeling that has been shown to be particularly effec-

tive in addressing life-long learning in non-stationary environments [2,12,23,33,37] . Evolving systems should be differentiated

from evolutionary and adaptive systems. Evolutionary refers to genetic algorithms and genetic programming and deals with

populations of individuals using recombination, mutation, and selection operators during multiple generations, typically in a

static way [16] . Adaptive systems in control and systems theory stands for models with adaptive parameters only. Evolving

systems refer to models with a higher level of flexibility and autonomy as not only their parameters but also their structures

can be changed over time according to novelties, such as new behaviors, anomalies, drifts and switches [35] . With real-time

parametric and structural adaptation, the issue of redesigning models from scratch is avoided in evolving methods. A variety

of heuristics have been proposed to guide the development and incremental adaptation of rule-based models from numeri-

cal [2,23] and granular [18,19] data streams. Persuasive practical solutions to immediate goals have been achieved. However,

assurances that certain conditions will be optimally fulfilled remain scarce in the area. 

An optimal framework to evolve rule-based granular models from numerical data streams, called evolving optimal gran-

ular system (eOGS), was proposed in [15] . eOGS uses piecewise affine and inclusion functions connected to Gaussian and

hyper-rectangular forms of granules to produce granular and numerical estimates of time-varying functions. By functions,

we mean time-series, decision boundaries between classes, and control and regression functions in general. eOGS adapts its

granular structure and parameters incrementally if new behaviors emerge or a change occurs in the data stream, while min-

imizing the multiobjective function. The eOGS framework [15] is briefly recalled and utilized for online ensemble learning

in this paper, with focus on time series prediction. 

In online ensemble learning for prediction, new data are processed on a per sample basis. The base evolving prediction

models and ensemble aggregation weights are updated dynamically according to new instances and the accumulated esti-

mation error within a sliding window to track nonstationarities. Since the estimation errors are averaged, an ensemble may

outperform and be more robust than individual predictors [30] . Aggregation functions play the key role of performing in-

formation fusion within ensembles. Ordered weighted averaging (OWA) functions is a parameterized class of means [47] . By

choosing specific weights for an OWA function, we are able to obtain various aggregation functions. This flexibility makes the

OWA operator quite suitable for data-driven learning. Specifically, we investigate the conventional OWA, median, weighted

arithmetic mean, and a linear non-inclusive centered OWA. These give preference to arguments lying in the middle. 

1.2. Objective, research issues, and contributions 

In this paper, an ensemble of eOGS prediction models for nonstationary time series prediction is constructed and evalu-

ated. Ensemble averaging consists of combining the outputs of multiple base models to produce a potentially more accurate

and robust estimation. The same data stream (i.e., past values of time series) is fed into a set of eOGS models. The models

are essentially different from each other due to a different set of meta-parameters (constraints on the eOGS objectives) and,

therefore, a different number of rules, granules, and different local parameters. Individual estimations are combined using

an aggregation function. We evaluate the usual OWA function as well as particular functions obtained from specific OWA

weights, e.g., weighted arithmetic mean, median, and a central OWA function. 

We seek to answer the following questions: (i) Does an ensemble of evolving prediction models (in particular of the

eOGS type) perform better than an individual evolving prediction model in a nonstationary environment? (ii) Is there a

better aggregation function to be used for information fusion of multiple models within ensembles? We consider weather

time series, in particular time series of daily mean temperature, air humidity and mean wind speed from different stations,

viz. Paris–Orly, Frankfurt–Main, Reykjavik and Oslo–Blindern for empirical evaluation. 

The main contributions are: (i) While existing online ensembles are very often devoted to classification tasks, this

paper proposes an ensemble of prediction models. Moreover, the base prediction models are evolved (parametrically

and structurally) autonomously in real-time according to a multiobjective function in a formal and systematic fashion;
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(ii) A structured analysis of averaging aggregation functions, such as the median and a linear non-inclusive centered OWA

function, is provided for the exclusion of the extremes and outliers. In addition, the conventional OWA function and the

weighted arithmetic mean, whose weights are adapted from a quadratic programming problem over data within a sliding

window, are investigated; and (iii) A thorough analysis of experimental results using real multivariate weather time series

is given. 

1.3. Brief review of the literature 

Ensemble-based classifiers are mostly constructed using batch classifiers and the concepts of bagging or boosting, or from

the accumulation of samples in a sliding window for multiple retraining steps [50] . Online data streams are time varying and

generated continuously, often at a fast sampling rate, which makes multiple training steps considering multiple base models

infeasible. Few studies about evolving base models within ensemble structures can be found in the literature. However, such

evolving base models and the ensemble itself are classifiers. This study deals with regressor learning, aggregation functions,

and optimal evolving granular fuzzy prediction models. 

An ensemble of evolving classifiers based on the concept of stacking is described in [9] . The base classifiers are self-

developing fuzzy-rule-based models of the eClass family [2] . Experimental results on two benchmark datasets suggest that

eStacking improves, in general, the performance of individual eClass models as long as they are sufficiently diverse. The

constraint of single-scanning through the data, inherent to online data-stream environments, imposed significant challenges

to learning and classification; however, the ensemble outperformed the individual evolving classifier. 

A parallel implementation of a typicality and eccentricity data analytics classification framework, known as TEDAClass,

was proposed in [11] . The idea is to divide the samples of a data stream into chunks and distribute the chunks to multiple

computing nodes. A parallel processing scheme using five processors can be viewed as an ensemble of classifiers. The en-

semble was shown to spend 12% of the computing time compared to the time spent by a single processor at the price of a

1.1% worse classification accuracy due to the parallelization. The parallel approach is convenient for dealing with thousands

or millions of data in high performance big-data processing. 

A fast deep learning network for handwriting recognition is proposed in [1] . The approach provides interpretable models

and is entirely data-driven. The network comprises an ensemble of zero-order evolving fuzzy rule-based models, which are

built in parallel through an Autonomous Learning Multiple Model (ALMMo) method. The decision on the class label is made

by a committee on the basis of the fuzzy mixture of the trained zero-order fuzzy models and an overall confidence score

for each class. 

Parsimonious ensemble (pENsemble) is proposed in [31] as an evolving variation of the dynamic weighted majority en-

semble method by [14] . pENsemble employs base evolving classifiers from data streams in its structure and is equipped with

a pruning mechanism. Base classifiers are pruned depending on localized generalization errors. Feature selection is also per-

formed during online learning. It has been shown that the pENsemble can handle local drift in data streams to maintain a

level of classification accuracy. 

Ensembles of intelligent prediction models are addressed in [25,32] . In this case, the neural and neuro-fuzzy base pre-

dictors are neither evolving nor adaptive. Often only the weights that give different levels of importance to the base models

are adaptive over time [8] . 

An ensemble of adaptive neuro-fuzzy inference systems (ANFIS) for chaotic time series prediction is described in [25] .

Simple and weighted averages were used to aggregate the predictions of the base ANFIS models. The diversity of the base

models is given by different types of membership functions and error goals. The performance of the ensemble architecture

overcomes that of several standard statistical methods and individual neural network models. Time series such as Mackey–

Glass, Dow Jones, and the Mexican stock exchange were considered in the evaluation. It should be noted that although

ANFIS is an acronym that suggests online parameter adaptation, ANFIS models are static. 

An adaptive ensemble based on Extreme Learning Machines (ELMs) for one-step prediction is presented in [8] . The en-

semble consists of a number of randomly initialized ELMs, from 60 to 70 models. A base ELM may have different numbers

of features, hidden neurons, biases, and input layer weights. The nonstationary time series Quebec Births was used to show

that the adaptive ensemble outperforms a static Least Squares Support Vector Machine approach. Although the weight of

each base ELM is adaptive according to the square error of the predictions, the base ELMs themselves are pre-trained and

static. 

All-pairs evolving fuzzy models to handle online multiclass classification problems are proposed in [22] . Binary classifiers

are developed for each pair of classes, which produces less complex decision boundaries, and faster data processing and

model updating. Type 1 Takagi–Sugeno fuzzy models, i.e., regressors, were also considered for each pair. The approach can

be viewed as an ensemble strategy that employs weighted voting based on a preference relation matrix to decide about the

class of a sample. The concepts of the reliability of classifiers, the degree of ignorance, and conflicts are discussed. Empirical

evaluation based on high-dimensional multi-class problems show that the all-pair evolving approach can boost classifier

accuracy. 

Two studies on ensembles of evolving predictors can be found in the literature [4,36] . In [4] , an ensemble of Fuzzy-

set-Based evolving Models (FBeM) [19] with different structures and parameters for multivariate weather time series

prediction is outlined. Each member of the ensemble is able to model the weather dynamics from data streams of wet

bulb temperature, atmospheric pressure, maximum temperature, and relative humidity of the air. Rainfall levels were
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Fig. 1. Ensemble of evolving models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

predicted five days in advance. Empirical results show that the FBeM ensemble outperformed other ensembles, such as

ensembles of ANFIS, evolving Takagi–Sugeno (eTS + ) and Dynamic Evolving Neuro–Fuzzy Inference System (DENFIS) models,

in terms of accurate numerical predictions. Arithmetic mean wasbasically used to combine the contribution of base FBeM

predictors. 

In [36] a variation of data cloud-based intelligent method known as TEDA [11] is given. In addition, an ensemble of

cloud and evolving fuzzy models were combined through the weighted arithmetic mean to give numerical predictions of

mean monthly temperature. Past temperature values, as well as previous values of exogenous variables, such as cloudiness,

rainfall, and humidity, are considered. A non-parametric Spearman correlation-based method is proposed to rank and select

the most relevant features and time delays for a more accurate prediction. A statistical hypothesis test showed that the

average performance of TEDA and the ensemble of models is essentially the same for a p -value of 0.05, and that TEDA

and the ensemble of models are statistically superior to the eTS and evolving extended Takagi–Sugeno (xTS) approaches

individually. 

2. Ensemble of predictors and aggregation functions 

2.1. Evolving ensemble 

In standard ensembles, all base models attempt to predict the same function. Each model is constructed independently

and then outputs are aggregated without preference to a model. Online ensembles have become attractive because they

display robustness to new data and patterns [30] . 

When a concept (a pattern of the time series) is abruptly replaced with a new concept, or when a drift (a gradual

change of the mean and/or variance of the data) occurs, any model tends to have its prediction accuracy instantaneously

or permanently reduced. Evolving models, however, track such changes because they utilize online incremental algorithms

to adapt their parameters as well as their structures. After a relatively quick transient adaptation period, an evolving model

usually returns to a stable accuracy rate. 

The steps to generate an evolving ensemble are: generate and evolve separately z eOGS experts (each operating with

different constraints and parameters) and, concomitantly, combine their estimations to provide the ensemble estimation. 

Different constraints for the objectives of the base eOGS models introduce diversity to the ensemble. Fig. 1 shows the pro-

posed evolving ensemble scheme. The eOGS framework, its basic concepts and incremental learning algorithm will be briefly

reviewed in Section 3 . 

Different types of aggregation functions can be used to perform information fusion within the evolving ensemble. In

general, there are no specific guidelines to choose a particular aggregation function. Weighted averaging aggregation is a

broad class of aggregation functions that are particularly more robust to errors in the data and to outliers, such as indi-

vidual estimation values provided during transient adaptation periods as a response to concept change. Different weights,

as components of the aggregation function, are assigned to the base models. The weights reflect the current relevance and

contribution of each base model to the ensemble estimation. 

In the following, weighted averaging functions to be used in the ensemble scheme are investigated. The classical OWA,

the weighted arithmetic mean, the median, and the linear non-inclusive centered OWA are studied. While the two first

functions have their weights updated according to a quadratic programming problem and previous estimation errors, the

two latter functions have a fixed and specific set of weights, but the special property of excluding extreme values. 
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2.2. Aggregation functions 

Aggregation functions C : [0 , 1] n → [0 , 1] , n > 1 combine real values in the unit hypercube [0, 1] n into a single real value

in [0, 1]. They must satisfy two fundamental properties: ( i ) monotonicity, i.e., given x 1 = (x 1 
1 
, . . . , x 1 n ) and x 2 = (x 2 

1 
, . . . , x 2 n ) ,

if x 1 
j 
≤ x 2 

j 
∀ j then C ( x 1 ) ≤ C ( x 2 ) ; ( ii ) boundary conditions: C (0 , 0 , . . . , 0) = 0 and C (1 , 1 , . . . , 1) = 1 [3,47] . 

2.2.1. T-norm and S-norm 

T-norms ( T ) are commutative, associative, and monotone operators whose boundary conditions are T (α, α, . . . , 0) = 0

and T (α, 1 , . . . , 1) = α, α ∈ [0, 1]. The neutral element of T-norms is e = 1 . An example is the minimum operator, T min ( x ) =
min j=1 , ... ,n x j , which is the strongest T-norm because T ( x ) ≤ T min ( x ) for any x ∈ [0 , 1] n . The minimum is also idempotent,

symmetric, and Lipschitz-continuous. Further examples of T-norms include the product and the Lukasiewicz T-norm. 

S-norms ( S ) are commutative, associative, and monotone operators. S(α, α, . . . , 1) = 1 and S(α, 0 , . . . , 0) = α are the

boundary conditions of S-norms. It follows that e = 0 is the neutral element of S-norms, which are stronger than T-norms.

The maximum operator, S max ( x ) = max j=1 , ... ,n x j , is the weakest S-norm, that is, S( x ) ≥ S max ( x ) ≥ T ( x ) , for any x ∈ [0 , 1] n .

Other examples include the probabilistic sum and the Lukasiewicz S-norm. 

2.2.2. Averaging aggregation 

An aggregation operator C is averaging if for every x ∈ [0 , 1] n it is bounded by T min ( x ) ≤ C ( x ) ≤ S max ( x ) . The basic rule is

that the output value cannot be lower or higher than any input value. An example of an averaging operator is the arithmetic

mean, 

M( x ) = 

1 

n 

n ∑ 

j=1 

x j . (1)

Averaging operators are idempotent, strictly increasing, symmetric, homogeneous, and Lipschitz continuous. 

Definition 1 (Weight Vector) . A vector w = (w 1 , . . . , w j , . . . , w n ) is called a weighting vector if w j ∈ [0, 1] ∀ j and 

∑ n 
j=1 w j = 1 .

Definition 2 (Weighted Arithmetic Mean) . Given weights w , the weighted arithmetic mean is the function 

M w 

( x ) = 

1 

n 

n ∑ 

j=1 

w j x j = 

1 

n 

< w , x > . (2)

M w 

is strictly increasing for w j > 0, and Lipschitz continuous. It is an asymmetric idempotent function, unless w j = 1 /n ∀ j;

additive, i.e., M w 

( x 1 + x 2 ) = M w 

( x 1 ) + M w 

( x 2 ) ∀ x 1 , x 2 ∈ [0 , 1] n and x 1 + x 2 ∈ [0 , 1] n ; and homogeneous, i.e., M w 

(λx ) =
λM w 

( x ) ∀ x ∈ [0 , 1] n and λ∈ � . It is a special case of Choquet integrals and Kernel function [3] . Determining the weights

of M w 

is an issue. Section 2.3 describes a quadratic programming problem in online data-stream context to obtain the

weights w of M w 

in an optimal way. 

2.2.3. Ordered weighted averaging 

Ordered weighted averaging (OWA) functions provide a parameterized class of mean [47] . These functions give weights

not to a particular input but rather to its current value [47] . Let x ↓ be obtained by sorting the elements of x in a nonin-

creasing order, x 1 ≥ . . . ≥ x j ≥ . . . ≥ x n . 

Definition 3 (OWA) . Given a weighting vector w , the OWA function is 

OWA w 

( x ) = 

n ∑ 

j=1 

w j x j = < w , x ↓ > . (3)

If all weights are equal, OWA becomes the arithmetic mean. The weights w = (1 , 0 , ..., 0) and w = (0 , ..., 0 , 1) produces

the maximum and minimum. For an odd or even n , w = (0 , . . . , 0 , 1 , 0 , . . . , 0) or w = (0 , . . . , 0 , 1 / 2 , 1 / 2 , 0 , . . . , 0) , respec-

tively, result in OWA w 

( x ) = Med( x ) , i.e., the median. OWA is strictly increasing, idempotent, continuous, symmetric, homo-

geneous and shift-invariant. It is a special case of Choquet integrals. If we take w with some non-zero values in the middle,

for example w = (0 , . . . , 0 , 1 / 6 , 1 / 3 , 1 / 3 , 1 / 6 , 0 , . . . , 0) , we obtain the Central OWA function proposed in [46] . The central

OWA takes into account central inputs. Nonetheless, we can identify the weights of OWA w 

using quadratic programming

and estimation errors, see Section 2.3 . In this case, it is unlikely that OWA w 

assumes the form of other specific operators. 

Definition 4 (Centered OWA) . An OWA operator of dimension n is centered if its associated weighting vector w is: (i)

symmetric, i.e., w j = w n − j+1 , j = 1 , . . . , n ; (ii) strongly decaying, i.e., if j 1 < j 2 ≤ (n + 1) / 2 , then w j 1 
< w j 2 

, and if j 1 > j 2 ≥
(n + 1) / 2 , then w j 1 

< w j 2 
; and (iii) inclusive: w j > 0 ∀ j . 

In this case, we say w is a centered weighting vector. These types of aggregation functions have the property of giving

the highest weight to the central scores and less weighting to extreme values. If we remove condition (iii), and let w j = 0
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in the extremes, then w is a non-inclusive centered aggregator. In this case, the strong decay requirement is changed when

we hit w j = 0 , as zeros may repeat (soft decaying [46] ). 

The median is a prototypical example of centered OWA. It is an average that is more representative of a typical value

than the mean is. It essentially discards very high and very low values (potential outliers). 

Definition 5 (Median) . Given an ordered n -dimensional vector x ↓ . The median is the function 

Med( x ) = 

{ 

1 

2 

(x n/ 2 + x (n/ 2)+1 ) , if n is even 

x (n +1) / 2 , otherwise . 
(4) 

A specific weighting vector w can be used to express the median as an OWA function. For an odd n , let w (n +1) / 2 = 1 and

w j = 0 ∀ j, j 
 = (n + 1) / 2 . For an even n , let w n/ 2 = w (n/ 2)+1 = 1 / 2 and w j = 0 for all other j . Then Med( x ) = OWA w 

( x ) . 

Otherwise, a linear non-inclusive centered OWA function that discards only the extreme left and right elements of x ↓ is

given as follows. 

Definition 6 (Linear Non-inclusive Centered OWA) . Linear Non-inclusive Centered OWA is a centered OWA function whose

weights are 

w = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

If j ≤ n 

2 

then w j = 

j − 1 

n +1 
2 

− 1 

If j > 

n 

2 

then w j = 

−2 

n − 1 

( j − 1 ) + 2 . 

(5) 

The resulting weights should be rescaled, w j = 

w j ∑ n 
j=1 w j 

, so that 
∑ n 

j=1 w j = 1 . 

2.3. Online learning of ensemble weights 

While the median ( Definition 5 ) and linear non-inclusive centered OWA ( Definition 6 ) have specific weights w , the

weights of the weighted arithmetic mean ( Definition 2 ) and OWA ( Definition 3 ) should be chosen consistently according

to the newest data (x, y ) [ h −ν] , ..., ( x, y ) [ h ] ; ν is the length of the time window. Identification of classical OWA weights was

studied in [43,44] . The issue is similar to that of the identification of the weights of arithmetic means. We use square

estimation errors and solve a standard quadratic programming problem recursively as follows. 

We minimize the sum of squares of the differences between estimated, ȳ p , and actual, y , values, within a time window

as follows: 

Q = min 

h ∑ 

h a = h −ν

( 

z ∑ 

p=1 

w p ̄y 
[ h a ] 
p − y [ h a ] 

) 2 

s.t. 

z ∑ 

p=1 

w p = 1 , w p ≥ 0 ∀ p, (6) 

where ȳ p is the estimation of the p th base model (refer to Fig. 1 ), ν is the size of the sliding time window. Parameter

ν means the lifetime of information within the short-term memory of eOGS models. This will be discussed in the next

sections. Therefore, the choice of ν depends on the purpose of the model. Models consider the last ν samples only to keep

evolution active. Eq. (6) is a quadratic programming problem with convex objective function, which can be solved by any

standard deterministic method, such as gradient descent. Quadratic programming has been shown to be numerically efficient

and stable with respect to rank deficiency (if the data are linearly dependent) [41] . 

Initially, w 

[0] 
p = 1 /z ∀ p. Then, 

w 

[ h +1] 
p = w 

[ h ] 
p − η

∂Q 

∂w p 
, p = 1 , . . . , z, (7) 

where η = 0 . 05 is constant by default. As evolving experts may outperform each other in different periods, convergence

of the weights is not expected, i.e., weights should change dynamically in an online environment. A small constant η is

sufficient to allow that such behavior happens depending on a successful sequence of accurate estimations given by an

expert. Relation (7) penalizes more severely the weight associated with a given expert if its estimations have been worse

than those of the remaining experts. After the adaptation of w p , the weights are rescaled, w 

[ h +1] 
p = 

w 

[ h +1] 
p ∑ z 

p=1 w 

[ h +1] 
p 

∀ p, so that

∑ z 
p=1 w 

[ h +1] 
p = 1 . 
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3. Optimal evolving granular framework 

3.1. Preliminaries 

The realization of granules in datasets has been discussed [20,27,28,38] . The principle of justifiable granularity [10,42] is a

broad concept to guide the formation of meaningful granules based on experimental evidence. The more data are included

within the bounds of a granule, the better. Granules should enclose all, or at least most, of the data. However, granules

should be as specific as possible to come with an appropriate semantic and be more supportive of decisions and actions.

If many data are included in a granule, the granule may become too wide. In contrast, if the granule is too small, few

data are covered. The requirements of experimental evidence and specificity are conflicting. eOGS relies on multi-objective

optimization, α-level sets, and Pareto fronts to achieve a trade-off between these requirements. 

Constructing eOGS models from data streams requires incremental learning to keep an updated summary of the data.

We want to capture spatial and temporal information from numerical data x [ h ] = (x 1 , . . . , x j , . . . , x n ) 
[ h ] , h = 1 , . . . , using a

set of granules γ = { γ 1 , . . . , γ c } . A local γ i is chosen to fit a sample x [ h ] , that is, to include the information conveyed by

x [ h ] . Otherwise, if x [ h ] is not sufficiently related to any γ i , then a new granule γ c+1 can be created – expanding the current

collection γ . Therefore, γ is a granular model that describes an unbounded data stream x [ h ] , h = 1 , . . . . 

Granules of an interval nature essentially depend on the lower l i 
j 

and upper L i 
j 

endpoints of axis-aligned hyper-rectangles.

Endpoints are determined by spanning α-level subsets of individual features. Assume a Gaussian membership function �i 
j 
=

G(μi 
j 
, σ i 

j 
) , which conveys the representation of the j th feature of the i th granule. We are interested in the range of values

that the data rest on most occasions. Parameter α cuts �i 
j 

at each tail and gives an interval [ l i 
j 
, L i 

j 
] , whose extension over

the Cartesian product space assembles a granule. Interval granules cover the data, and fuzzy Gaussians keep the essence

of the information. Depending on α and the tightness of �i 
j 
, granules and rule-based models may achieve any specificity.

For example, if a learning algorithm is used to recursively adapt μi 
j 

and σ i 
j 
, then �i 

j 
may enlarge, shrink, and drift to track

nonstationarities in data streams. At the same time, we can use α to control the size of intervals [ l i 
j 
, L i 

j 
] , i.e., to manage the

specificity of granules. 

3.2. Specificity measure 

Specificity refers to the amount of information conveyed by a granule [45] . Specificity measures approach their maximum

values as an object closes in a single element. Values of specificity range within the interval [0,1], where 0 means that all

points of a domain are equally possible, and 1 implies singularity. Let � be a subset of X . Yager [45] defines a general class

of specificity over the continuous domain as 

Sp (�) = 

∫ αmax 

0 

F (λ(�α)) d α, (8)

where �α = { x : �(x ) ≥ α} is the α-level of �; αmax is the height of �; λ is a monotonic measure; and F : [0, 1] → [0, 1] is

a function such that F (0) = 1; F (1) = 0; and 0 ≤ F ( x 1 ) ≤ F ( x 2 ), for x 1 > x 2 . 

Let � be a Gaussian membership function in X , with modal value μ and dispersion σ , 

� = e −(x −μ) 2 / 2 σ 2 

. (9)

Gaussians are normal (height equal to 1), and have infinite support. Level sets of Gaussian membership functions are

intervals �α , whose centers and radii are of the form μ ±
√ 

−2 σ 2 ln (α) . 

Using the Yager definition of specificity (8) , the α-level set, �α , the Lebesgue–Stieltjes measure (8) for λ in a totally

bounded domain, X = [ c, d] , and F (z) = 1 − z, similar to [15] , we obtain the specificity of � as 

Sp (�) = 1 − 2 

√ 

2 σ
√ 

−ln (α) 

d − c 
, (10)

where [ c, d] = [0 , 1] if the data x ∈ [0, 1] – see the development steps in [15] . Let �i = { �i 
1 
, . . . , �i 

j 
, . . . , �i 

n } be a set of

Gaussian functions such that �i 
j 

has domain X j , and let X n = X 1 × . . . × X j × . . . × X n . Through α-cuts we may assemble an

interval granule γ i in X 

n . We define the specificity of a n -dimensional granule γ i as the average of the specificity measure

of each of its n components, namely, 

Spa (γ i ) = 1 − 2 

√ 

2 

n 

n ∑ 

j=1 

σ i 
j 

√ 

−ln ( α) 

d j − c j 
. (11)

3.3. Multiple objectives 

Online learning methods to build granular rule-based models should ideally update key decision parameters to provide

the requested outcomes in an optimal sense and satisfy constraints. A decision maker may either interactively set eOGS
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meta-parameters, namely P , to force a specific model structure and behavior, or use automatic procedures for the purpose

of optimizing an objective function within the feasible region formed by constraints. Parameters P will be presented formally

in the next section. 

Possible criteria to guide the adaptation of eOGS meta-parameters P include the numerical estimation error ( E n ), granular

estimation error ( E g ), specificity of the granular map (Spa( γ )), and total number of rules ( c ). Generally, we want to reduce

the numerical and granular errors, increase the specificity/meaningfulness of the granules, and maintain a compact rule-

base structure. Clear tradeoffs emerge, e.g., a smaller number of rules tends to produce less specific granular maps, and may

generate better or worse estimations depending on the data stream. 

A multiobjective function to be minimized is 

F (P ) = min [ f 1 (P ) , f 2 (P ) , f 3 (P ) , f 4 (P )] 

s.t. P ∈ 
 (12) 

where 
 is the parameter space, and 

E n � f 1 (P ) , 

E g � f 2 (P ) , 

−Spa (γ ) = −
c ∑ 

i =1 

Spa (γ i ) � f 3 (P ) , 

c � f 4 (P ) . 

The objectives of (12) have no analytic expression in terms of P , and they compete so that the solution is not unique.

Improvement in one objective may degrade the others but maintain Pareto optimality. Experts can express preferences for a

solution along a tradeoff surface. An interactive approach to choose P and produce a set of solutions, which is suggested to

the decision maker, is given in [15] . In the next section, we describe a fully-autonomous approach to choose P in a balanced

way. 

In the ε-constraint method [5] , a priority objective is chosen to be optimized while the other objectives are converted

into constraints by setting an upper bound to each of them. Problem (12) takes the form 

F (P ) = min f s (P ) 

s.t. f t (P ) ≤ εt , ∀ t, t 
 = s 

P ∈ 
 (13) 

whose solution is Pareto optimal if the objective functions are convex [5,15] . Otherwise, as convexity is never guaranteed in

nonstationary context, the method provides local non-inferior solutions [5,15] . 

A systematic and fully autonomous heuristic procedure to change the decision parameters P of eOGS models is given in

Section 4.2 . In this case, the heuristic procedure is the decision maker, and no human is involved in the process of finding

a solution to (12) from (13) . In practice, users can also systematically select values for P manually, and observe if the price

that should be paid by the secondary objectives for an improvement of the priority objective, f s , is acceptable. In this case,

the user is the decision maker. 

To summarize, once a priority objective, and the bounds for the remaining objectives are chosen, eOGS aims to generate

local non-inferior solutions in terms of numerical and granular estimation errors, structural compactness, and granular speci-

ficity. eOGS is a heuristic procedure that continuously attempts to solve (13) at each time step. In other words, constraints

are not violated during the autonomous operation of the algorithm since meta-parameters P are changed to guarantee their

feasibility. Additionally, the primary objective is constantly driven to a minimum by means of a granulation mechanism,

granule updating procedure, and Recursive Least Squares method, which are performed within the eOGS framework. Ap-

proaches for the eOGS heuristics may either involve user preferences in an interactive mode, or be fully autonomous. In

both cases, the solutions developed during the processing steps are only approximations of the Pareto optimal solutions.

This is because the systems we are concerned with are nonstationary, and eventually subject to functional changes. Details

of the eOGS are given in the following sub-sections. Section 4 summarizes the interactive design, and the fully autonomous

operation approaches of the eOGS. 

3.4. eOGS Rule Base 

An eOGS granule, γ i , is defined by spanning α-level sets of membership functions �i 
j 
= G(μi 

j 
, σ i 

j 
) , j = 1 , . . . , n, in the

space X 1 × . . . × X n . Granule γ i can be explicitly described by the rule 

R i : IF ( l i 
1 

≤ x 1 ≤ L i 
1 
) AND ... AND ( l i n ≤ x n ≤ L i n ) 

THEN ( u i 
1 

≤ y 1 ≤ U 

i 
1 
) AND ȳ i 

1 
= p i 

1 
(x 1 , . . . , x n ) AND 

... 

( u i m 

≤ y m 

≤ U 

i 
m 

) AND ȳ i m 

= p i m 

(x 1 , . . . , x n ) , 

where l i 
j 

and L i 
j 
, j = 1 , . . . , n ; i = 1 , . . . , c, are the j th lower and upper bounds of the attribute x j according to the i th rule;
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u i 
k 

and U 

i 
k 
, k = 1 , . . . , m, are the k th lower and upper bounds of the output y k ; and p i 

k 
are affine functions, 

ȳ i k = p i k (x 1 , . . . , x n ) = a i 0 k + 

n ∑ 

j=1 

a i jk x j . (14)

In general, each p i 
k 

can be of a different type and does not need to be linear. The hyper-rectangle γ i conveys Gaussian

membership functions �i 
j 
= G(μi 

j 
, σ i 

j 
) , j = 1 , . . . , n, as internal representation – additional information that summarizes

past data belonging to γ i . Modal values, μi 
j 
, and dispersions, σ i 

j 
, are captured recursively from the data stream. Moreover,

the Recursive Least Squares (RLS) algorithm [17] is used to determine the coefficients a i 
jk 

, j = 0 , . . . , n, k = 1 , . . . , m, of the

functions p i 
k 

whenever the i th rule is active for an input sample x = (x 1 , . . . , x n ) . 

3.5. Stiegler initialization procedure 

Granule and rule are created either if x [ h ] is not in [ l i 
j 
, L i 

j 
] ∀ i and some j ; or y [ h ] is not in [ u i 

k 
, U 

i 
k 
] ∀ i and some k . Notice

that the bounds of the underlying intervals depend on the value of α that cuts �i 
j 

and �i 
k 
. If α → 0 + , then [ l i 

j 
, L i 

j 
] ∀ j and

[ u i 
k 
, U 

i 
k 
] ∀ k cover the whole input and output spaces, i.e., they form unit n - and m -dimensional hyperboxes. Contrariwise, if

α → 1 −, then γ i degenerates into a point. 

One approach to initialize the parameters of a new granule is to consider Stigler’s standard Gaussian function [39] . The

new granule γ c+1 has modal value 

μc+1 
j,k 

= (x j , y k ) 
[ h ] ∀ j, k, (15)

and dispersion 

(σ c+1 
j,k 

) 2 = 1 / 2 π ∀ j, k. (16)

A hyper-rectangle centralized in ( x, y ) [ h ] is obtained as the Cartesian product of unidimensional α-cuts. Granule bounds are

given as 

[ l c+1 
j 

, L c+1 
j 

] = x [ h ] 
j 

±
√ 

−2(σ c+1 
j 

) 2 ln ( α) (17)

and 

[ u 

c+1 
k 

, U 

c+1 
k 

] = y [ h ] 
k 

±
√ 

−2(σ c+1 
k 

) 2 ln ( α) , (18)

0 < α < 1. Polynomial coefficients are set as 

a c+1 
0 k 

= y [ h ] 
k 

, ∀ k ; and a c+1 
jk 

= 0 , ∀ k, j = 1 , . . . , n. (19)

Initial granule specificity is obtained from (11) . 

The Stiegler initialization approach may require some steps for the new granule to shrink and be sized similarly to the

other granules. New samples within the bounds of the new granule are used to adapt its modal value, dispersion, and

consequent coefficients. In [15] , a Minimal initialization procedure that is useful for univariate time-series prediction is also

given. 

3.6. Parameter adaptation 

Real-world data streams change over time. Adapting eOGS rules consists in enlarging or contracting granules, and simul-

taneously changing the coefficients of local functions. 

Consider data within a time window, (x, y ) [ h −ν] , (x, y ) [ h −ν+1] , . . . , ( x, y ) [ h ] ; ν is the length of the window, h is the time

step. If a new x [ h ] fits [ l i 
j 
, L i 

j 
] ∀ j, and y [ h ] fits [ u i 

k 
, U 

i 
k 
] ∀ k and some i , then the parameters of the local Gaussians �i are

updated recursively from 

μi 
j,k (new) = 

ν i μi 
j,k 

(old) + (x j , y k ) 
[ h ] 

ν i + 1 

, ∀ j, k (20)

and (
σ i 

j,k (new) 
)2 = 

ν i (μi 
j,k 

− (l j , u k )) + β(| μi 
j,k 

− (x j , y k ) 
[ h ] | ) 

(ν i + 1)(μi 
j,k 

− (l j , u k )) 

(
σ i 

j,k (old) 
)2 

, ∀ j, k, (21)

where ν i is the number of samples belonging to γ i out of the past ν samples; β = 2 is a default value. Larger or smaller

values for the parameter β force the expansion or contraction of Gaussians over the iterations, and more or less specific

granular maps. 
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The α-level set of the updated granule, γ i , is found as 

[(l i j , u 

i 
k ) , (L i j , U 

i 
k )] = μi 

j,k (new) ±
√ 

−2 ln ( α) 
(
σ i 

j,k 
( new ) 

)2 
(22) 

∀ j, k . Moreover, the specificity of the underlying granule, Spa( γ i ), is calculated as in (11) . 

Given a priority objective f s (numerical or granular estimation error, specificity of the granular map, or total number of

rules), the ε-constraint method (13) finds α and β to satisfy the constraints f t , and minimize f s . The values of α and β are

used in (21) and (22) to update the dispersions �i 
j 

and �i 
k 

and determine the bounds [ l i 
j 
, L i 

j 
] and [ u i 

k 
, U 

i 
k 
] . Users manifest

their preferences by choosing the main objective and setting admissible values for the constraints εt ∀ t . 

Notice that the adaptation procedures described are recursive, i.e., old values are replaced by new values. Therefore, a

sample ( x, y ) [ h ] can be discarded after being processed. The RLS algorithm [17] adapts the coefficients a i 
jk 

∀ j, k, for samples

that activate γ i . Notice also that the size of the time window, ν , means the lifetime of information within the short-term

memory of eOGS models. Models consider the last ν samples only to keep evolution active. Additionally, notice that only

one granule, and its associated local functions, needs to be updated per learning step. If two or more granules are active

for a sample, then the most active granule after the application of the minimum (Gödel) T-norm over fuzzy membership

degrees is used to determine the winner granule, i.e., the granule to be updated. 

3.7. Merging and deleting granules 

Merging granules, say γ i 1 and γ i 2 , is helpful in reducing the number of rules and eliminating partially overlapping

granules representing similar information. We take the 2-norm of the difference between midpoints of all pairs of granules,

i.e., 

arg min 

i 1 ,i 2 =1 , ... ,c; i 1 
 = i 2 

|| μi 1 − μi 2 || 
n 

, (23) 

where n is the number of features, or dimensions of μ. Given the closest granules, γ i 1 and γ i 2 , if 

|| μi 1 − μi 2 || 
n 

≤ ω, (24) 

being ω a constant or time-varying threshold, then the granules are merged. Manual and automatic adaptation approaches

for ω according to an objective and constraints will be described in the Methodology section. 

The resulting granule, say γ c+1 , is formed by n + m Gaussian membership functions ( n inputs and m outputs) whose

modal values depend on the amount of samples each of the merged granules used to represent. Formally, 

μc+1 
j,k 

= 

ν i 1 μi 1 
j,k 

+ ν i 2 μi 2 
j,k 

ν i 1 + ν i 2 
, ∀ j, k. (25) 

The maximum dispersion approach takes 

σ c+1 
j,k 

= max (σ i 1 
j,k 

, σ i 2 
j,k 

) , ∀ j, k, (26) 

as the dispersions of γ c+1 . The idea is to preserve information of a variety of samples in the merging region. Given (25) and

(26) , granule bounds and specificity can be obtained from (22) and (11) by analogy. Coefficients are set as 

a c+1 
jk 

= 

a i 1 
jk 

+ a i 2 
jk 

2 

, ∀ j, k. (27) 

A number of methods for merging can be developed considering dispersions, specificity, α-cuts, slope of local functions, and

time windows, which may provide different results. An extensive analysis of this issue is beyond the scope of this paper. 

Inactive rules for a number of iterations can be deleted. This may mean that the underlying system changed and re-

moving granules is practical to keep the rule base size as compact as possible. Remember ν i , the amount of samples that

activated γ i out of the newest ν samples, x [ h −ν] , . . . , x [ h ] . For inactive granules, ν i = 0 , and the respective granule and rule

can be removed. 

3.8. Interval function for granular prediction 

The image of γ i through a real function p i 
k 

is 

p i k ([ l i 1 , L 
i 
1 ] , . . . , [ l 

i 
n , L 

i 
n ]) = { p i k (x 1 , . . . , x n ) : x j ∈ [ l i j , L 

i 
j ] , j = 1 , . . . , n } . 

Generally, the image of γ i through p i 
k 

is not a hyperrectangle, and it may be difficult to obtain in closed form. In practice,

p i 
k 

can be approximated by an inclusion function P i 
k 
, which is a hyperrectangle in the range of p i 

k 
, namely [ u i 

k 
, U 

i 
k 
] . An interval

function P i 
k 

is called an inclusion function if p i 
k 

⊆ P i 
k 
∀ i . Inclusion functions are not unique; they depend on how we choose P .
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An inclusion function P i 
k 

is optimal if it is the hull of p i 
k 
. In other words, the optimal inclusion function for p i 

k 
is the smallest

hyperrectangle P i 
∗

k 
that contains p i 

k 
. P i 

∗
k 

is unique. Its specificity is the highest possible value that guarantees inclusion. 

Let p i 
k 

be monotonically increasing in [ l i 
j 
, L i 

j 
] , j = 1 , . . . , n . Then we can obtain p i 

k 
from 

p i k (x ) = [ p i k (l i 1 , . . . , l 
i 
n ) , p 

i 
k (L i 1 , . . . , L 

i 
n )] . 

Consequently, for any x ∈ γ i , p i 
k 
(x ) ⊆ [ p k (l i ) , p k (L i )] . For monotonic decreasing functions we have 

p i k (x ) = [ p i k (L i 1 , . . . , L 
i 
n ) , p 

i 
k (l i 1 , . . . , l 

i 
n )] . 

We adopt 

p i k (x ∈ γ i ) = a i 0 k + 

n ∑ 

j=1 

a i jk [ l 
i 
j , L 

i 
j ] , (28)

where (a i 
0 k 

, . . . , a i 
nk 

) are degenerated intervals. If the slope a i 
jk 

< 0 , then the bounds should be inverted, i.e. [ L i 
j 
, l i 

j 
] . 

3.9. Incremental learning algorithm 

The eOGS learning algorithm for time series prediction is summarized as follows: 

BEGIN 

Set parameters P = { α, β, ν, ω} ; (default values can be chosen, see 
… Section 4.2. They are: α = 0 . 1 , β = 2 , ν = 500 and ω = 0 . 01 ); 

Choose a priority objective f s ; 
Choose admissible values for the remaining objectives εt ∀ t; 
for h = 1 , . . . 

Read input data x [ h ] ; 
if h = 1 

Create granule γ 1 and rule R 1 (Eqs. (15)–(19) and (11)); 

Provide singular ȳ [ h ] and granular [ u 1 , U 1 ] [ h ] predictions; 
else 

Provide singular ȳ [ h ] and granular [ u i , U i ] [ h ] predictions; 

// The actual output y [ h ] becomes available; 

if x [ h ] 
j 

/ ∈ [ l i 
j 
, L i 

j 
] ∀ i and some j 

Create granule γ c+1 and rule R c+1 (Eqs. (15)–(19) and (11)); 
else 

Adapt the most active granule γ i (Eqs. (20)–(22) and (11)); 

Use the RLS algorithm to update the coefficients a i 
jk 

; 

end 
end 
Delete inactive granules and rules; 
Merge granules and rules (Eqs. (23)–(27), (11), (22)); 
Adapt parameters P = { α, β, ν, ω} to minimize f s respecting εt ∀ t; 

end 
END 

4. Methodology 

We describe a numerical and a granular error measure to evaluate model accuracy. A fully-autonomous procedure to

adapt eOGS meta-parameters is addressed. The characteristics of real multivariate weather datasets are summarized. 

4.1. Error indices 

The root mean square error of numerical predictions, 

RMSE = 

1 

H 

H ∑ 

h =1 

√ 

1 

m 

m ∑ 

k =1 

(
y [ h ] 

k 
− ȳ [ h ] 

k 

)2 

, (29)

where H is the current time step, and m is the number of outputs, is a measure of accuracy to compare different models

for a particular dataset. 

An error measure for granular predictions that takes into account data inclusion and the narrowness of the enclosure,

known as mean granular error [15] , is 

MGE = 

1 

kH 

H ∑ 

h =1 

m ∑ 

k =1 

1 − z 
[ h ] 

k 

(
1 −

(
U 

[ h ] 

k 
− u 

[ h ] 

k 

))
, (30)
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where 

z 
[ h ] 

k 
= 

{
1 if y [ h ] 

k 
∈ [ u k , U k ] 

[ h ] 

0 otherwise . 
(31) 

If the actual output, y 
[ h ] 

k 
, is out of the prediction bounds, [ u k , U k ] 

[ h ] , then z 
[ h ] 

k 
= 0 , giving the maximum MGE . The MGE

index is less than 1 only if the granular prediction encloses y 
[ h ] 

k 
. The narrower the bounds [ u k , U k ] 

[ h ] that encloses y 
[ h ] 

k 
are,

the smaller the MGE . 

4.2. Fully autonomous operation 

A typical form of the optimization problem (13) takes the numerical estimation error as primary objective, i.e., 

F (P ) = min RMSE 

s.t. MGE ≤ ε1 

c ≤ ε2 

Spa (γ ) ≥ ε3 (32) 

The RMSE can be interchanged with any constraint. If a constraint is violated, the algorithm should respond as soon as

possible by means of the parameters P = { α, β, ν, ω} . The default values for P are α = 0 . 1 , β = 2 , ν = 500 and ω = 0 . 01 ,

see [15] . If a prior set of samples is available, a data stream can be simulated in a matter of seconds and, perhaps, more

appropriate parameters can be found. Convenient boundary values are 0.01 ≤α ≤ 1; 1.5 ≤β ≤ 2.5; ν ≥ n , i.e., ν should be

at greater or equal than the number of features; and 0.01 ≤ω ≤ 0.05 [15] . As this paper focuses on numerical prediction

accuracy, (32) is an appropriate formulation. 

During the online operation of the eOGS algorithm, if a constraint is violated, parameters are changed as follows: 

• If MGE > ε1 , then α is stepped up by 0.01, and σ 2 is stepped down by 0.01 for new granules, but kept within a

minimal and the Stiegler range of values, i.e. 0.01 ≤σ 2 ≤ 1/2 π . 

• If c > ε2 , then α is stepped down by 0.01, and ω is stepped up by 0.001. After some iterations, when c assumes a

feasible value, ω is reset to default. 

• If Spa( γ ) < ε3 , then α is stepped up by 0.01, and β is stepped down by 0.001. After some iterations, when Spa( γ )

assumes a feasible value, β is reset to default. 

Additionally, 

• If RMSE > ε4 , then α is stepped down by 0.01, and σ 2 is stepped up by 0.01 for new granules, but kept within a

minimal and the Stiegler range of values, i.e. 0.01 ≤σ 2 ≤ 1/2 π . 

If the values εt are set in an unrealistic way, parameters P reach a limit and the best possible solution is presented. 

While the eOGS algorithm ( Section 3.9 ) attempts to minimize the RMSE and MGE indices, and the number of rules, c ;

and to maximize the specificity, Spa( γ ), the procedure described in this section monitors the constraints. If a constraint is

violated, then parameters P are updated to reestablish the feasibility of the optimization problem. 

4.3. Weather time series 

Weather prediction, in particular daily mean temperature prediction, is useful to plan activities, protect property, and

assist decision making in several economic sectors, such as energy, transportation, aviation, agriculture, inventory planning.

Any system that is sensitive to the state of the atmosphere may benefit from such predictions. 

Computational experiments assume data from different weather stations, namely, 

• PARIS-ORLY, FR, Lat: + 48:43:00, Lon: + 002:22:59, elevation: 90 m; 

• FRANKFURT-MAIN (FELDBERGSTR.), DE, Lat: + 50:07:21, Lon: + 008:39:39, elevation: 109 m; 

• REYKJAVIK, IS, Lat: + 64:07:37, Lon: −021:54:09, elevation: 52 m; 

• OSLO-BLINDERN, NO, Lat: + 59:56:34, Lon: + 010:43:14, elevation: 94 m. 

The datasets are summarized in Table 1 , considering the daily mean temperature ( x 1 ) in [ ◦C], daily humidity ( x 2 ) in [%],

and daily mean wind speed ( x 3 ) in [m/s]; SD is the standard deviation. The mean and standard deviation of weather time

series change over weeks, months, and years, characterizing nonstationarities in many time granularities. The Olso-Blindern

dataset contains 5 missing humidity values (06/07/2011, 11/22/2012, 12/03/2012, 01/12/2013, 12/11/2013). We imputed the 

mean value. The datasets are available at eca.knmi.nl, see also [13] . The data were subsequently normalized in the range [0,

1]. 

The task of the prediction models is to give one-step forecasts of the daily mean temperature y [ h +1] using the last 3

observations of the daily mean temperature ( x 1 ), air humidity ( x 2 ) and mean wind speed ( x 3 ). Therefore, the input vector

contains 9 attributes, i.e., x [ h ] = (x 
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Fig. 2. eOGS prediction results: numerical and granular estimates of the Frankfurt daily mean temperature in the next day; evolution of the number 

of rules over time; average specificity of the granular map; evolution of the numerical and granular error indices over time; and final output Gaussian 

membership functions. 
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Fig. 3. Evolution of the ensemble base models weights for the Paris-Orly weather station using weighted arithmetic mean (top) and OWA (bottom) aggre- 

gation functions. 

Table 1 

Daily mean time series from different weather stations. 

Station Samples From To Mean ± SD ( x 1 ) Mean ± SD ( x 2 ) Mean ± SD ( x 3 ) 

PARIS–ORLY 10,623 01/01/1990 01/31/2019 12.04 ± 6.62 73.70 ± 18.78 3.86 ± 1.73 

FRANKFURT–MAIN 16,102 01/01/1975 01/31/2019 10.63 ± 7.52 74.38 ± 13.08 3.26 ± 1.60 

REYKJAVIK 18,262 01/01/1967 12/31/2016 4.70 ± 5.15 77.90 ± 9.76 5.24 ± 2.76 

OSLO–BLINDERN 21,581 01/01/1960 01/31/2019 6.27 ± 8.28 73.43 ± 15.87 2.73 ± 1.58 

x 1 : daily mean temperature [ ◦C]; x 2 : daily humidity [%]; x 3 : daily mean wind speed [m/s] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Online learning methods employ the sample-per-sample testing-before-training approach, as follows. First, an estimation 

ȳ [ h +1] is obtained for a given input x [ h ] . One time step later, the actual value y [ h +1] becomes available, and model adaptation

is performed if necessary. eOGS models are evaluated individually for each weather station, and as part of an ensemble of

12 eOGS models. In the ensemble cases, different averaging aggregation functions (weighted arithmetic mean, median, OWA,

and linear non-inclusive centered OWA) are studied with a focus on the accuracy of the numerical predictions. 

5. Results and discussions 

eOGS models were designed with focus on the numerical prediction accuracy, as in (32) . In other words, the primary

objective of the eOGS models is the minimization of the root mean square error given by the square of the difference be-

tween actual and estimated daily mean temperatures. Additionally, ε1 and ε2 are upper boundaries for the mean granular

error and the number of rules in the rule base, respectively; and ε3 is the lower boundary for the specificity of the granular

map. Naturally, ε i , i = 1 , 2 , 3 , is a preference. Different users may choose different values and, therefore, produce different

models. Table 2 shows the results for 12 eOGS models constructed from combinations of ε i . The Paris–Orly, Frankfurt–Main,

Reykjavik, and Oslo–Blindern weather stations were taken into consideration. The table also compares the results of the 12

eOGS models, as base models of ensembles, individually. Four ensemble structures were evaluated using different aggre-

gation functions: weighted arithmetic mean (WAM), ordered weighted averaging (OWA), median, and linear non-inclusive

central OWA. 

From Table 2 , we observe that all ensembles outperformed all individual models for the weather stations under consid-

eration. The central OWA aggregation function provides slightly better results compared to the OWA and Median functions.

In common, and different from the WAM function, these functions order the input data before weighting and processing the

data. In general, a reason for the relatively better estimates for Oslo and worse estimates for Reykjavik can be attributed to,



D. Leite and I. Škrjanc / Information Sciences 504 (2019) 95–112 109 

Fig. 4. Best numerical estimates for: (top) Paris–Orly using OWA Ensemble; (top middle) Frankfurt–Main using Central OWA Ensemble; (bottom middle) 

Reykjavik using Median Ensemble; (bottom) Oslo-Blindern using Central OWA Ensemble. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively, a lower and higher mean wind speed and variance in these cities, as shown in Table 1 , which affect the daily

mean temperature. 

To illustrate the results generated by an individual eOGS model, we consider eOGS-1 and the Frankfurt station. In this

case, the overall performance of the model is RMSE = 0 . 0544 , MGE = 0 . 5639 , c = 8 , and Spa( γ ) = 0 . 4130 . Notice that the

MGE is less than ε1 = 0 . 6 ; c is less than ε2 = 10 , and Spa( γ ) is greater than ε3 = 0 . 4 , as expected; see Table 2 . The time

spent to process 16,099 data samples was 18.06 s in a i7-8550U CPU dual-core 1.88–1.99 GHz processor with 8GB of

RAM, which gives an average of 1.1 ms per sample. Such data processing and model adaptation speed makes the proposed

method suitable for several meteorological applications and for other applications involving very-large and high-frequency

data streams. By means of parallelism of the base models, the ensemble can also perform online adaptation and predic-

tion in sampling frequencies similar to that of individual eOGS models. The key issue is to keep the fuzzy rule base of

each base model compact. This is achieved by means of the merging procedure, the mechanism to delete rules that are no

longer used, and the explicit constraint on the number of rules. Fig. 2 shows the results for the Frankfurt–Main (Feldbergstr.)

station using eOGS-1. 

From Fig. 2 , we observe that eOGS provides an envelope around the actual data along with the numerical prediction. The

upper and lower bounds of the enclosure may have different meanings and be useful to support decisions and actions in

particular applications. The enclosure can be made narrower if we demand a smaller MGE and allow the model to evolve a

larger number of rules (more specific granules) regarding the formulation of the original optimization problem. The inter-

mediate plots show the evolution of the rule base, specificity of the granular map, and error indices. The average number of

rules was 7.1, with a standard deviation of 1.5 rules over time. The number of rules becomes larger than the allowed value

only once (see iteration 15,0 0 0, approximately). As soon as the constraint ε2 is violated, the parameters P are automatically

changed, and the most similar granules and rules are merged. The final output Gaussian membership functions are shown in

the bottom plot. In the last iterations, the Gaussians were concentrated approximately in the range of amplitudes between

0.33 and 0.82 (see x axis). The Gaussians usually drift, to the left and to the right, along the time steps, according to the

oscillations of amplitude of the flowing data. New Gaussians may be included; highly overlapped Gaussians can be merged;

and inactive Gaussians can be deleted by the eOGS online learning algorithm. 
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Table 2 

Numerical prediction results for the individual eOGS models and the ensembles using different aggregation 

functions. 

– Constraints RMSE (Place) 

Base model ε1 ε2 ε3 Paris Frankfurt Reykjavik Oslo 

eOGS-1 0.6 10 0.4 0.0565 (6th) 0.0544 (5th) 0.0689 (5th) 0.0574 (7th) 

eOGS-2 0.5 10 0.4 0.0626 (12th) 0.0676 (15th) 0.0841 (15th) 0.0687 (15th) 

eOGS-3 0.6 7 0.4 0.0563 (5th) 0.0547 (6th) 0.0696 (6th) 0.0573 (6th) 

eOGS-4 0.5 7 0.4 0.0654 (16th) 0.0690 (16th) 0.0847 (16th) 0.0673 (11th) 

eOGS-5 0.6 5 0.4 0.0569 (7th) 0.0567 (7th) 0.0701 (7th) 0.0567 (5th) 

eOGS-6 0.5 5 0.4 0.0631 (15th) 0.0665 (13th) 0.0838 (14th) 0.0667 (10th) 

eOGS-7 0.6 10 0.5 0.0608 (10th) 0.0623 (9th) 0.0783 (9th) 0.0697 (16th) 

eOGS-8 0.5 10 0.5 0.0607 (9th) 0.0662 (12th) 0.0809 (11th) 0.0682 (14th) 

eOGS-9 0.6 7 0.5 0.0610 (11th) 0.0630 (10th) 0.0783 (9th) 0.0664 (9th) 

eOGS-10 0.5 7 0.5 0.0630 (14th) 0.0666 (14th) 0.0811 (12th) 0.0680 (13th) 

eOGS-11 0.6 5 0.5 0.0604 (8th) 0.0612 (8th) 0.0776 (8th) 0.0622 (8th) 

eOGS-12 0.5 5 0.5 0.0627 (13th) 0.0659 (11th) 0.0815 (13th) 0.0678 (12th) 

Ensemble (WAM) 0.0542 (4th) 0.0518 (4th) 0.0643 (4th) 0.0503 (4th) 

Ensemble (OWA) 0.0537 (1st) 0.0511 (2nd) 0.0625 (3rd) 0.0490 (3rd) 

Ensemble (Median) 0.0540 (3rd) 0.0512 (3rd) 0.0624 (1st) 0.0488 (1st) 

Ensemble (Central OWA) 0.0537 (1st) 0.0509 (1st) 0.0624 (1st) 0.0488 (1st) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ensemble that uses the central OWA aggregation function produced the overall best numerical estimates, as shown

in Table 2 . The central OWA function operates with constant weights, which prioritize the middle elements after the input

vector, ȳ = ( ̄y 1 , . . . , ̄y 12 ) , is sorted in descending order. For 12 base models, the central OWA weights are 

w (CentralOWA ) = (0 , 0 . 0333 , 0 . 0 6 67 , 0 . 10 0 0 , 0 . 1333 , 0 . 1667 , 0 . 1667 , 0 . 1333 , 0 . 10 0 0 , 0 . 0 6 67 , 0 . 0333 , 0) , 

i.e., the extremes are excluded, and the central elements, w 6 and w 7 , are more relevant to the estimates during the whole

data processing cycle. The median function uses 

w (Median ) = (0 , 0 , 0 , 0 , 0 , 0 . 5 , 0 . 5 , 0 , 0 , 0 , 0 , 0) 

to achieve the second-best result. The weights are also constant, and applied over input vectors sorted in descending order.

Emphasis is entirely on w 6 and w 7 , and x 6 and x 7 . 

Weights of the weighted arithmetic mean and OWA aggregation functions are updated according to the quadratic pro-

gramming problem given in (6) and (7) . In the weighted-arithmetic-mean case, a weight is associated to the prediction of a

specific base model. For example, for the Paris weather station, the final weight vector (iteration 10620) is 

w WAM 

= (0 . 1845 , 0 . 0354 , 0 . 1900 , 0 . 0063 , 0 . 1759 , 0 . 0211 , 0 . 0813 , 0 . 0821 , 0 . 0765 , 0 . 0244 , 0 . 0904 , 0 . 0321) . 

Notice that the highest weight is w 3 , followed by w 1 and w 5 , and that the best base model for Paris, according to Table 2 ,

is eOGS-3, followed by eOGS-1 and eOGS-5. In other words, the most accurate eOGS base models are underlined along the

iterations to contribute more to the ensemble estimates. Additionally, for the Paris station, the final OWA weights are given

as 

w OWA = (0 . 0 010 , 0 . 0 064 , 0 . 0894 , 0 . 1247 , 0 . 1349 , 0 . 1391 , 0 . 1359 , 0 . 1310 , 0 . 1219 , 0 . 0931 , 0 . 0212 , 0 . 0013) . 

Interestingly, in spite of the asymmetry, the OWA weights approach the weights of a central OWA function along the

iterations. Fig. 3 shows the evolution of the weighted-arithmetic-mean and OWA-aggregation-function weights over time.

In the former case, the weights related to the best base models prevail, see w 3 , w 1 , and w 5 . In the latter case, the middle

elements, w 6 and w 7 , prevail, similarly to the weights of other centered aggregation functions. The same results, in essence,

were obtained for the other time series. 

Finally, the best numerical estimates for Paris, Frankfurt, Reykjavik, and Oslo, given respectively by the OWA, Central-

OWA, Median, and Central-OWA functions, are shown in Fig. 4 . The results are quite accurate and, in general, may come

with additional information from the fuzzy granular framework, such as granule bounds, enclosures, Gaussian membership

functions, and linguistic description by means of rules. 

6. Conclusion 

We introduced an ensemble approach for nonstationary time series prediction in which the base models evolve their

granular rule-based structures and parameters over time. The base models are guided by constrained optimization problems

whose primary objective is to minimize the root mean square error between estimates and actual time-series values. The

specificity-compactness tradeoff and the variability and coverage of the data along the process of data stream modeling

are taken into consideration. The contributions of the base models to the ensemble estimation are merged using different

averaging aggregation functions, such as ordered weighted averaging, weighted arithmetic mean, median, and linear non-

inclusive centered OWA. These functions were comparatively studied. 
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Real multivariate time series from the Paris–Orly, Frankfurt–Main, Reykjavik, and Oslo–Blindern weather stations were

used for model development and performance evaluation. We aimed to estimate the daily mean temperature from the last

3 available temperature values, and from exogenous attributes such as air humidity and mean wind speed. We observed

that all ensembles performed better than all base evolving models individually. Moreover, in general, the predictions for

Oslo and Reykjavik were the most and least accurate, respectively, due to a lower and higher mean wind speed and data

variance in these cities, which affect the daily mean temperature. 

The proposed linear non-inclusive central OWA aggregation function was superior to the remaining functions by a small

margin, especially compared to other functions that also emphasize the elements in the middle, i.e., OWA and median.

Averaging the estimates and excluding the extremes have shown to be important characteristics because evolving models are

constantly changing and, therefore, are subject to transient periods. For example, the creation of a new information granule

and rule requires some steps for an appropriate adjustment of the local parameters. The estimations of such a base model

during a transient may come with a level of uncertainty. The ensemble plays a key role in this case, providing robustness

and more consistent estimations. In addition, the proposed evolving-optimal-granular-modeling approach provides numerical

predictions as well as granular predictions of time series. Lower and upper prediction bounds encapsulate the actual data

and may be important information to encourage decision making in a variety of applications. 

Averaging aggregation to fuse information within ensembles should be evaluated in other data stream applications in the

future. Other classes of problems, such as granular data-stream processing, and nonuniform sampling, will be investigated. 
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